- Home
- Standard 12
- Mathematics
Express the following matrices as the sum of a symmetric and a skew symmetric matrix : $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Solution
Let $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right],$ then $A^{\prime}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Now, $A+A^{\prime}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] $ $+\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right] $ $=\left[\begin{array}{ccc}12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6\end{array}\right]$
Let $P=\frac{1}{2}\left(A+A^{\prime}\right)=\frac{1}{2}\left[\begin{array}{ccc}12 & -4 & 4 \\ -4 & 6 & -2 \\ 4 & -2 & 6\end{array}\right]=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$
Now, $P^{\prime}=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=P$
Thus, $P=\frac{1}{2}\left(A+A^{\prime}\right)$ is a symmetric matrix.
Now, $A-A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]+\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Let $Q=\frac{1}{2}\left(A-A^{\prime}\right)=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Now, $Q^{\prime}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=-Q$
Thus $Q=\frac{1}{2}\left(A-A^{\prime}\right)$ is a skew-symmetric matrix.
Representing $A$ as the sum of $P$ and $Q$
$P+Q=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ $+\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ $=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]=A$